Estimation

Section 7.3

Estimating \(p \) in the Binomial Distribution

Focus Points

• Compute the maximal length of error for proportions using a given level of confidence.

• Compute confidence intervals for \(p \) and interpret the results.

• Interpret poll results.

• Compute the sample size to be used for estimating a proportion \(p \) when we have an estimate for \(p \).
Focus Points

- Compute the sample size to be used for estimating a proportion p when we have no estimate for p.

Estimating p in the Binomial Distribution

The binomial distribution is completely determined by the number of trials n and the probability p of success on a single trial.

For most experiments, the number of trials is chosen in advance. Then the distribution is completely determined by p. In this section, we will consider the problem of estimating p under the assumption that n has already been selected.

We are employing what are called large-sample methods. We will assume that the normal curve is a good approximation to the binomial distribution, and when necessary, we will use sample estimates for the standard deviation.

Empirical studies have shown that these methods are quite good, provided both

$$np > 5 \quad \text{and} \quad nq > 5, \quad \text{where} \ q = 1 - p$$
Estimating p in the Binomial Distribution

Let r be the number of successes out of n trials in a binomial experiment.

We will take the sample proportion of successes \hat{p} (read "p hat") = r/n as our point estimate for p, the population proportion of successes.

Estimating p in the Binomial Distribution

To compute the bounds for the margin of error, we need some information about the distribution of $\hat{p} = r/n$ values for different samples of the same size n.

Estimating p in the Binomial Distribution

It turns out that, for large samples, the distribution of values is well approximated by a normal curve with mean $\mu = p$ and standard error $\sigma = \sqrt{pq/n}$.

Since the distribution of $\hat{p} = r/n$ is approximately normal, we use features of the standard normal distribution to find the bounds for the difference $\hat{p} - p$.

Recall that z_c is the number such that an area equal to c under the standard normal curve falls between $-z_c$ and z_c.
Then, in terms of the language of probability,

\[-\frac{\sqrt{n}}{\sqrt{npq}} < \hat{p} - p < \frac{\sqrt{n}}{\sqrt{npq}} \]

Equation (17) says that the chance is \(c \) that the numerical difference between \(\hat{p} \) and \(p \) is between \(-\frac{\sqrt{n}}{\sqrt{npq}} \) and \(\frac{\sqrt{n}}{\sqrt{npq}} \). With the \(c \) confidence level, our estimate \(\hat{p} \) differs from \(p \) by no more than

\[E = \frac{z}{\sqrt{npq}} \]

As in Section 7.1, we call \(E \) the maximal margin of error.

\[z = \begin{cases} 1.96 & \text{for } c = 0.95 \\ 1.645 & \text{for } c = 0.90 \end{cases} \]
Estimating \(p \) in the Binomial Distribution

To find a \(c \) confidence interval for \(p \), we will use \(E \) in place of the expression \(\frac{z}{\sqrt{npq}} \) in Equation (17). Then we get

\[
P(-E < \hat{p} - p < E) = c
\]

(19)

Some algebraic manipulation produces the mathematically equivalent statement

\[
P(\hat{p} - E < p < \hat{p} + E) = c
\]

(20)

Equation (20) states that the probability is \(c \) that \(p \) lies in the interval from \(\hat{p} - E \) to \(\hat{p} + E \).

Therefore, the interval from \(\hat{p} - E \) to \(\hat{p} + E \) is the \(c \) confidence interval for \(p \) that we wanted to find.

There is one technical difficulty in computing the \(c \) confidence interval for \(p \).

The expression \(E = \frac{z}{\sqrt{npq}} \) requires that we know the values of \(p \) and \(q \). In most situations, we will not know the actual values of \(p \) or \(q \), so we will use our point estimates

\[
p = \hat{p} \quad \text{and} \quad q = 1 - p = 1 - \hat{p}
\]

to estimate \(E \).
Estimating p in the Binomial Distribution

These estimates are reliable for most practical purposes, since we are dealing with large-sample theory ($np > 5$ and $nq > 5$).

For convenient reference, we’ll summarize the information about confidence intervals for p, the probability of success in a binomial distribution.

Example 6 – Confidence Interval for p

Let’s return to our flu shot experiment described at the beginning of this section.

Suppose that 800 students were selected at random from a student body of 20,000 and given shots to prevent a certain type of flu.

All 800 students were exposed to the flu, and 600 of them did not get the flu.

Let p represent the probability that the shot will be successful for any single student selected at random from the entire population of 20,000. Let q be the probability that the shot is not successful.
Example 6(a) – Confidence Interval for p

What is the number of trials n? What is the value of r?

Solution:
Since each of the 800 students receiving the shot may be thought of as a trial, then $n = 800$, and $r = 600$ is the number of successful trials.

Example 6(b) – Confidence Interval for p

What are the point estimates for p and q?

Solution:
We estimate p by the sample point estimate
\[
\hat{p} = \frac{r}{n} = \frac{600}{800} = 0.75
\]

We estimate q by
\[
\hat{q} = 1 - \hat{p} = 1 - 0.75 = 0.25
\]

Example 6(c) – Confidence Interval for p

Check Requirements Would it seem that the number of trials is large enough to justify a normal approximation to the binomial?

Solution:
Since $n = 800$, $p = 0.75$, and $q = 0.25$, then
\[
np = (800)(0.75) = 600 > 5 \quad \text{and} \quad np = (800)(0.25) = 200 > 5
\]

A normal approximation is certainly justified.
Example 6(d) – Confidence Interval for p

Find a 99% confidence interval for p.

Solution:

$z_{0.99} = 2.58$ (Table 5(b) of Appendix II)

$$E = z_{0.99} \sqrt{\frac{p(1-p)}{n}} = 2.58 \sqrt{\frac{0.75(0.25)}{800}} = 0.0395$$

Example 6(d) – Solution

The 99% confidence interval is then

$$\hat{p} - E < p < \hat{p} + E$$

$$0.75 - 0.0395 < p < 0.75 + 0.0395$$

$$0.71 < p < 0.79$$

Interpretation: We are 99% confident that the probability a flu shot will be effective for a student selected at random is between 0.71 and 0.79.

Interpreting Results from a Poll
Interpreting Results from a Poll

Newspapers frequently report the results of an opinion poll. In articles that give more information, a statement about the margin of error accompanies the poll results.

In most polls, the margin of error is given for a 95% confidence interval.

Sample Size for Estimating p

Suppose you want to specify the maximal margin of error in advance for a confidence interval for p at a given confidence level c.

What sample size do you need?

The answer depends on whether or not you have a preliminary estimate for the population probability of success p in a binomial distribution.
Sample Size for Estimating p

Procedure:

Example 7 – Sample Size for Estimating p

A company is in the business of selling wholesale popcorn to grocery stores. The company buys directly from farmers. A buyer for the company is examining a large amount of corn from a certain farmer. Before the purchase is made, the buyer wants to estimate p, the probability that a kernel will pop.

Suppose a random sample of n kernels is taken and r of these kernels pop.

The buyer wants to be 95% sure that the point estimate $\hat{p} = r/n$ for p will be in error either way by less than 0.01.

a. If no preliminary study is made to estimate p, how large a sample should the buyer use?
Example 7 – Solution

In this case, we use Equation (22) with $z_{0.95} = 1.96$ (see Table 7-2) and $E = 0.01$.

![Image](image.png)

Some Levels of Confidence and Their Corresponding Critical Values

Table 7-2

The buyer would need a sample of $n = 9604$ kernels.

Example 7 – Sample Size for Estimating p

(b) A preliminary study showed that p was approximately 0.86. If the buyer uses the results of the preliminary study, how large a sample should he use?

Solution:

In this case, we use Equation (21) with $p = 0.86$.

Again, from Table 7-2, $z_{0.95} = 1.96$, and from the problem, $E = 0.01$.

$$n = \frac{p(1-p)}{E^2}$$
The sample size should be at least \(n = 4626 \). This sample is less than half the sample size necessary without the preliminary study.